Small Angle Oscillations of the Double Pendulum (2024)

Table of Contents
Background The Double Pendulum

Background

When physicists study the double pendulum, they often do so in the context of chaos theory. It is one of the simplest dynamical systems that has chaotic solutions. However, under the right conditions, even the double pendulum simplifies down to a simple series of oscillators with well-defined normal modes.

Most derivations of the normal modes that I see online use Lagrangians or Hamiltonians to get to the final answer. These derivations are great, but we can also solve for the modes of the double pendulum using Newton’s laws. Let’s take a look.

The Double Pendulum

We will start off with a diagram of the double pendulum. Suppose two point masses (each with mass \(m\)) are attached to two massless strings (each with length \(\ell\)). We measure the angles \(\theta_1\) and \(\theta_2\) from the rest positions of each pendulum.

Small Angle Oscillations of the Double Pendulum (1)

We can calculate the \(x\) and \(y\) positions of each mass using some simple trigonometry. Let \(x_1\) and \(y_1\) be the \(x\) and \(y\) positions of the upper mass. Let \(x_2\) and \(y_2\) be the \(x\) and \(y\) positions of the lower mass. We will set the origin of the system to be the point where the double pendulum is connected to the ceiling.

Small Angle Oscillations of the Double Pendulum (2)

\[\begin{equation}x_1 = \ell sin\theta_1\end{equation}\]\[\begin{align}y_1 = - \ell cos\theta_1\\[0.1cm]\end{align}\]\[\begin{align}x_2 &= x_1 + \ell sin\theta_2\\[0.1cm]&= \ell sin\theta_1 + \ell sin\theta_2\\[0.1cm]&= \ell \left ( sin\theta_1 + sin\theta_2 \right )\\[0.1cm]\end{align}\]\[\begin{align}y_2 &= y_1 - \ell cos\theta_2\\[0.1cm]&= - \ell cos\theta_1 - \ell cos\theta_2\\[0.1cm]&= - \ell \left (cos\theta_1 + cos\theta_2 \right )\\[0.1cm]\end{align}\]

We want to analyze the motion of the double pendulum under small angle oscillations (\(\theta_1\) and \(\theta_2\) close to zero). In that case, we know that \(sin\theta \approx \theta\) and \(cos\theta \approx 1\).

\[\begin{equation}x_1 \approx \ell \theta_1 \Rightarrow \theta_1 \approx \frac{x_1}{\ell}\end{equation}\]\[\begin{equation}y_1 \approx - \ell\end{equation}\]\[\begin{equation}x_2 \approx \ell \left ( \theta_1 + \theta_2 \right ) \Rightarrow \theta_2 \approx \frac{x_2 - x_1}{\ell}\end{equation}\]\[\begin{equation}y_2 \approx -2 \ell\end{equation}\]

Notice how \(y_1\) and \(y_2\) are constant under the small angle approximation - the masses have a tiny movement horizontally and have negligible motion in the vertical direction. Thus, we can ignore the \(y\)-component of acceleration. Let’s set up Newton’s laws for each mass along the horizontal (\(x\)) direction. Let \(T_1\) and \(T_2\) be the tensions in the upper and lower strings respectively.

\[\begin{align}m \ddot{x}_1 &= -T_1 sin\theta_1 + T_2 sin\theta_2\\[0.1cm]&\approx -T_1 \theta_1 + T_2 \theta_2\\[0.1cm]&\approx -T_1 \frac{x_1}{\ell} + T_2 \frac{x_2 - x_1}{\ell}\end{align}\]\[\begin{align}m \ddot{x}_2 &= -T_2 sin\theta_2\\[0.1cm]&\approx -T_2 \theta_2\\[0.1cm]&\approx -T_2 \frac{x_2 - x_1}{\ell}\end{align}\]

The small angle approximation implies that the double pendulum will hang almost vertically, even during the oscillations. Thus, the magnitude of the tension in each string is simply equal to the weight of the masses that it supports; the tensions are \(T_1 \approx 2mg\) and \(T_2 \approx mg\).

Solving for \(\ddot{x}_1\) yields:

\[\begin{equation}m \ddot{x}_1 = -2mg \frac{x_1}{\ell} + mg \frac{x_2 - x_1}{\ell}\end{equation}\]\[\begin{align}\ddot{x}_1 &= \frac{g}{\ell} \left [ -2 x_1 + x_2 - x_1 \right ]\\[0.1cm]&= \frac{g}{\ell} \left [ -3 x_1 + x_2 \right ]\end{align}\]

Solving for \(\ddot{x}_2\) yields:

\[\begin{equation}m \ddot{x}_2 = -T_2 \frac{x_2 - x_1}{\ell}\end{equation}\]\[\begin{equation}m \ddot{x}_2 = -mg \frac{x_2 - x_1}{\ell}\end{equation}\]\[\begin{align}\ddot{x}_2 = -\frac{g}{\ell} \left ( x_2 - x_1 \right )\end{align}\]

Let \(\omega_o \equiv \sqrt{g/\ell}\). Then:

\[\begin{equation}\ddot{x}_1 + 3\omega_o^2 x_1 - \omega_o^2 x_2 = 0\end{equation}\]\[\begin{equation}\ddot{x}_2 + \omega_o^2 x_2 - \omega_o^2 x_1 = 0\end{equation}\]

It is easiest to solve this system of equations by writing it out in matrix form.

\[\begin{equation}\begin{bmatrix}\ddot{x}_1\\[0.1cm]\ddot{x}_2\end{bmatrix}+\begin{bmatrix}3\omega_o^2 & -\omega_o^2\\[0.1cm]-\omega_o^2 & \omega_o^2\end{bmatrix}\begin{bmatrix}x_1\\[0.1cm]x_2\end{bmatrix}= 0\end{equation}\]

Let’s assume that the oscillations have a form \(x(t) = C cos(\omega t + \delta)\) where \(C\) and \(\delta\) are constants. Then we can write out \(x_1(t)\) in the same form:

\[\begin{equation}x_1(t) = c_1 cos(\omega t + \delta_1)\end{equation}\]\[\begin{equation}\dot{x}_1(t) = -\omega c_1 sin(\omega t + \delta_1)\end{equation}\]\[\begin{equation}\ddot{x}_1(t) = -\omega^2 c_1 cos(\omega t + \delta_1) = -\omega^2 x_1\end{equation}\]

And we can do the same for \(x_2(t)\):

\[\begin{equation}x_2(t) = c_2 cos(\omega t + \delta_2)\end{equation}\]\[\begin{equation}\dot{x}_2(t) = -\omega c_2 sin(\omega t + \delta_2)\end{equation}\]\[\begin{equation}\ddot{x}_2(t) = -\omega^2 c_2 cos(\omega t + \delta_2) = -\omega^2 x_2\end{equation}\]

Plugging these expressions into the matrix equation yields:

\[\begin{equation}\begin{bmatrix}-\omega^2 x_1\\[0.1cm]-\omega^2 x_2\end{bmatrix}+\begin{bmatrix}3\omega_o^2 & -\omega_o^2\\[0.1cm]-\omega_o^2 & \omega_o^2\end{bmatrix}\begin{bmatrix}x_1\\[0.1cm]x_2\end{bmatrix}= 0\end{equation}\]\[\begin{equation}\begin{bmatrix}-\omega^2 & 0\\[0.1cm]0 & -\omega^2\end{bmatrix}\begin{bmatrix}x_1\\[0.1cm]x_2\end{bmatrix}+\begin{bmatrix}3\omega_o^2 & -\omega_o^2\\[0.1cm]-\omega_o^2 & \omega_o^2\end{bmatrix}\begin{bmatrix}x_1\\[0.1cm]x_2\end{bmatrix}= 0\end{equation}\]\[\begin{equation}\begin{bmatrix}3\omega_o^2 - \omega^2 & -\omega_o^2\\[0.1cm]-\omega_o^2 & \omega_o^2 - \omega^2\end{bmatrix}\begin{bmatrix}x_1\\[0.1cm]x_2\end{bmatrix}= 0\end{equation}\]

We can solve for \(\omega\) by taking the determinant.

\[\begin{equation}det\begin{bmatrix}3\omega_o^2 - \omega^2 & -\omega_o^2\\[0.1cm]-\omega_o^2 & \omega_o^2 - \omega^2\end{bmatrix}= 0\end{equation}\]\[\begin{align}\left ( 3\omega_o^2 - \omega^2 \right ) \left ( \omega_o^2 - \omega^2 \right ) - \omega_o^4 &= 0\\[0.1cm]3\omega_o^4 - \omega^2 \omega_o^2 - 3\omega_o^2 \omega^2 + \omega^4 - \omega_o^4 &= 0\\[0.1cm]2\omega_o^4 - 4\omega_o^2 \omega^2 + \omega^4 &= 0\end{align}\]

Let \(\xi = \omega^2\). Then

\[\begin{equation}\xi^2 - 4\omega_o^2 \xi + 2 \omega_o^4 = 0\end{equation}\]

We can solve for \(\xi\) using the quadratic formula:

\[\begin{align}\xi &= \frac{4\omega_o^2 \pm \sqrt{16\omega_o^4 - 8\omega_o^4}}{2}\\[0.1cm]&= 2 \omega_o^2 \pm \frac{\sqrt{8\omega_o^4}}{2}\\[0.1cm]&= 2 \omega_o^2 \pm \omega_o^2 \sqrt{2}\end{align}\]

Substituting \(\omega^2\) into \(\xi\) yields:

\[\begin{equation}\omega^2 = \omega_o^2 \left ( 2 \pm \sqrt{2} \right )\end{equation}\]

And there we have it! These are the normal modes for the double pendulum, derived from forces and Newton’s laws. Admittedly, the calculation of the displacements of each normal mode is a little bit more complicated and is better handled with the mathematics of Lagrangians and Hamiltonians.

Small Angle Oscillations of the Double Pendulum (3)

Small Angle Oscillations of the Double Pendulum (2024)
Top Articles
Liverpool vs Arsenal - final score, goals, Slot and Arteta reaction
LFC News - 'Concrete bids', Gordon talks & friendly cancelled?
Mybranch Becu
Tiny Tina Deadshot Build
Pet For Sale Craigslist
Devon Lannigan Obituary
Skamania Lodge Groupon
COLA Takes Effect With Sept. 30 Benefit Payment
<i>1883</i>'s Isabel May Opens Up About the <i>Yellowstone</i> Prequel
Delectable Birthday Dyes
Directions To Lubbock
Whiskeytown Camera
Boat Jumping Female Otezla Commercial Actress
Www.paystubportal.com/7-11 Login
South Bend Tribune Online
Slushy Beer Strain
New Stores Coming To Canton Ohio 2022
Craftology East Peoria Il
Pay Boot Barn Credit Card
The Menu Showtimes Near Regal Edwards Ontario Mountain Village
Site : Storagealamogordo.com Easy Call
Nevermore: What Doesn't Kill
Busted Mcpherson Newspaper
Prot Pally Wrath Pre Patch
Turbo Tenant Renter Login
Inter Miami Vs Fc Dallas Total Sportek
Saxies Lake Worth
Radical Red Ability Pill
Pronóstico del tiempo de 10 días para San Josecito, Provincia de San José, Costa Rica - The Weather Channel | weather.com
4.231 Rounded To The Nearest Hundred
Craigslistodessa
Lawrence Ks Police Scanner
Trust/Family Bank Contingency Plan
Bi State Schedule
Emiri's Adventures
Powerball lottery winning numbers for Saturday, September 7. $112 million jackpot
Goodwill Houston Select Stores Photos
Frostbite Blaster
Shih Tzu dogs for sale in Ireland
Cherry Spa Madison
Mars Petcare 2037 American Italian Way Columbia Sc
The Banshees Of Inisherin Showtimes Near Reading Cinemas Town Square
Sam's Club Gas Prices Florence Sc
Panorama Charter Portal
Ferguson Showroom West Chester Pa
Karen Wilson Facebook
Ethan Cutkosky co*ck
Walmart Front Door Wreaths
Is Chanel West Coast Pregnant Due Date
Guy Ritchie's The Covenant Showtimes Near Look Cinemas Redlands
About us | DELTA Fiber
Elizabethtown Mesothelioma Legal Question
Latest Posts
Article information

Author: Greg Kuvalis

Last Updated:

Views: 5549

Rating: 4.4 / 5 (75 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Greg Kuvalis

Birthday: 1996-12-20

Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

Phone: +68218650356656

Job: IT Representative

Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.